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The paper presents an approximate analysis for high Hartmann number of the 
flow of an electrically conducting, incompressible fluid in a duct of square cross- 
section, having one pair of opposite walls insulating, and the other pair perfectly 
conducting and inclined a t  arbitrary orientation to a uniform transverse magnetic 
field. The flow is considered to be either pressure-driven with the two perfectly 
conducting electrodes short-circuited together or electrically driven by a potential 
difference applied between these electrodes in the absence of axial pressure 
gradient. The paper describes experiments on the pressure-driven, short- 
circuited case using mercury in copper ducts to investigate the variation of the 
streamwise pressure gradient and of the potential distribution along one in- 
sulating wall with orientation, magnetic field and flow rate. 

At general orientations the analysis suggests and the experiments confirm the 
existence of regions of stationary fluid in the corners of the duct, together with 
viscous shear layers parallel to the magnetic field. For the case in which the 
electrodes are parallel to the magnetic field the experimental results for the 
pressure gradient, but not those for the potential distribution, agree reasonably 
well with Hunt & Stewartson’s (1965) asymptotic solution. Both pressure 
gradient and potential results agree closely with the analysis by Hunt (1965) of 
the case in which the electrodes are perpendicular to the magnetic field. 

1. Introduction 
The development of magnetohydrodynamic devices such as power generators, 

pumps and flowmeters with both conducting and non-conducting walls has led 
to considerable interest in the flow of fluids in rectangular ducts in the presence of 
transverse magnetic fields. The general practical situation is so intractable that 
solutions have first been sought for cases of the fully developed, laminar, incom- 
pressible flow of uniformly conducting fluids in ducts of constant cross-section. 

Hunt & Stewartson (1965) analyzed the flow in a rectangular duct having 
perfectly conducting walls parallel to the magnetic field and insulating walls 
perpendicular to the field, which is the geometry of greatest technological interest. 
The flow is driven by either an axial pressure gradient or an applied potential 
difference between the perfectly conducting walls, or both. They showed that at  
high Hartmann numbers M ,  the flow in a duct of width 2a in the field direction 



430 C. J .  N .  Alty 

consists of a central core moving with uniform velocity, together with Hartmann 
boundary layers of thickness of order a /M on the walls perpendicular to the field, 
and boundary layers of thickness of order a / M i  in which the velocity falls mono- 
tonioally on the walls parallel to the field. The form of the velocity distribution is 
independent of the external electrical circuit, if any. 

Hunt (1965) analyzed the case in which the above duct has been rotated through 
90" relative to the field direction. At high Hartmann numbers he again found 
Hartmann boundary layers on the walls perpendicular to the field, flanking a 
central core of uniform velocity v,. On the walls parallel to  the field he found 
boundary layers of thickness of order a/M*, within which the velocity profile is 
approximately of the form of exponentially damped sine waves with peak 
velocities of order Mu,. 

Perfectly conducting /c ?A Insulating wall 

conducting electrode 

w An'gle of orientation 

\ connexion 

FIGURE 1. Cross-section of square duct  with walls of mixed conductivities at arbitrary 
orientation to a transverse magnetic field. The z axis is directed out  of the page. 

AB = BC = 2a. 

The present work is concerned to bridge the gap between these two markedly 
different situations by considering the flow in a duct of uniform, square cross- 
section with one pair of opposite walls insulating and the other pair perfectly 
conducting and at  arbitrary orientation to the transverse magnetic field, as in 
figure 1. Preliminary analysis of the situation for high Hartmann numbers by 
Shercliff (private communication) led to the surprising prediction that, at  
general orientations 0 of the perfectly conducting walls to the magnetic field, the 
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fluid would be at rest in the two triangles ABE and CDF, cut off by lines through 
the corners of the duct parallel to the field. Shercliff also showed that for pressure- 
driven flow with the two perfectly conducting walls short-circuited together at 
orientations below 45" the pressure gradient for a given flow rate and field strength 
would vary as cos2 0. 

This paper presents further approximate theoretical analysis of the situation 
for orientations above and below 45" for pressure-driven short-circuited flow and 
for electrically driven flow with no axial pressure gradient. It is found that the 
vanishing of the fluid velocity in the triangles is a freak property of ducts which 
have right-angled corners in the triangles. The flow in the central parallelogram 
region is found to consist of forms of skewed Hartmann flow, separated from the 
stationary regimes in the triangles by thin viscous layers or wakes of thickness of 
order a / M t  lying parallel to the magnetic field. 

For orientations below 45" the velocity in each layer is found to vary in 
approximately the error function manner. Solutions of this type have been found 
by several workers in comparable configurations. Hasimoto (1960) considered the 
case of the steady motion in its own plane and parallel to its edge of a semi- 
infinite perfectly conducting flat plate in a conducting fluid in the presence of a 
uniform transverse magnetic field. At high Hartmann numbers he found approxi- 
mately parabolic wakes, aligned with the magnetic field and emanating from the 
edge of the plate, within which the fluid velocity and the induced magnetic field 
vary in the error function manner. Outside the wakes, the fluid in the half-space 
containing the plate moves at the same velocity as the plate, while the fluid in the 
other half-space is at rest. 

Todd (1 967) found similar wakes in the flow at high Hartmann numbers along 
the annular channel between two non-conducting circular cylinders, whether 
concentric or not, in the presence of a uniform transverse magnetic field. In  that 
case the parabolic wakes are centred on the magnetic field lines which are 
tangential to the inner cylinder. 

Hunt &, Williams (1968) discussed previous work on the occurrence of layers or 
wakes aligned with magnetic fields. They extended the work by considering the 
electrically driven flow of a fluid between two parallel non-conducting planes 
fitted with a pair of parallel line electrodes in the presence of a magnetic field 
perpendicular to the planes. For large Hartmann numbers M for the cases in 
which the electrodes were opposite one another or offset they found thin layers, 
of thickness of order a /Mt  where 2a was the separation of the planes, extending 
from the electrodes in the direction of the magnetic field, within which the 
velocity varied in the error function manner. Hunt & Williams' result for the case 
of offset electrodes closely resembles the solution found in $ 4  of the present 
paper for electrically driven flow for orientations 0 of less than 45". 

For orientations above 45" there are found to be discontinuities across the 
layers both in the velocity and in the component of electric field parallel to the 
applied magnetic field. Situations involving similar discontinuities have been 
discussed by several workers. The theoretical studies of Yakubenko (1963), 
Moffatt (1964), and Waechter (1968) have been reviewed by Hunt & Williams 
(1968). Moffatt pointed out that a discontinuity across a layer in the component 
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of electric field parallel to the layer would give rise to large electrio fields normal 
to the layer. As large currents in that direction do not occur, there must be large 
opposing induced e.m.f.s v x B, and these in turn call for large fluid velocities 
within the layer. Hunt & Stewartson (1969) obtained a complete asymptotic 
solution to the problem, discussed earlier by Hunt & Malcolm (1968), of the 
eleotrically driven flow of a conducting fluid between two circular electrodes set 
opposite one another in insulating planes, with a uniform magnetic field applied 
perpendicular to the planes. At high Hartrnann numbers they predicted the 
existence of thin circumferential shear layers joining the rims of the electrodes, 
within which high fluid velocities would occur. Their theoretical results for the 
potential and velocity distributions within the shear layers agreed closely with 
the experimental results of Hunt & Malcolm (1968) and Malcolm (1968), which 
convincingly demonstrated the existence of these high velocity layers. 

The paper describes how the theory was tested in experiments at Hartmann 
numbers greater than 100 on the pressure-driven flow of mercury in copper ducts 
with the pair of highly conducting walls short-circuited together. Measurements 
were made of the variation with orientation, field strength and flow rate of the 
streamwise pressure gradient and the electric potential distribution along one 
of the insulating walls. The results for pressure gradient were consistently higher 
than anticipated and suggested a relative correction of order M-l, which is not 
understood. The potential results, except for anomalies a t  zero orientation, 
agreed closely with the theoretical predictions, and afford convincing evidence 
that the mercury in the two triangular regions was at rest. A detailed description 
of the work is given in the author’s thesis (Alty 1966). 

The work described in this paper was mentioned in a lecture by Shercliff (1967). 
Subsequently, Kulikovskii (1968) gave a general discussion of such flows at high 
Hartmann numbers. He indicated how discontinuities in the boundary conditions 
associated with such a flow lead to the division of the core into distinct regions 
separated by thin viscous layers, parallel to  the magnetic field, across which 
discontinuities in various properties may occur. 

2. The governing equations 
We consider the steady reotilinear flow of an incompressible and non-magnetic 

fluid of uniform conductivity v, viscosity 7 and density p in a straight duct whose 
cross-section is shown in figure 1, together with the co-ordinate axes used. The 
perfectly conducting electrodes are inclined at an angle 8 to a uniform transverse 
applied magnetic field of flux density B,. The flow is either pressure-driven with 
the two electrodes short-circuited together as in figure 1, or electrically driven 
by a potential difference applied between the electrodes. There is no variation in 
the z direction in the geometry of the duct, in the conductivity of the walls or in 
the transverse magnetic field, and the external circuit connected between the 
electrodes is continuous in the x direction. The flow is fully developed and all 
quantities (except pressure in the pressure-driven case) are independent of x .  It 
follows that the pressure gradient apjaz, if any, is constant throughout the 
cross-section of the duct and that current flow is confined to x, y planes. 



Magnetohydrodynamic duct flow 433 

From ShercW (1965),  the equations governing the flow take the following form 
in rationalized M.K.S. units: 

j ,  = gEx; j ,  = g(E,+v,B,), (2.1) 

( 2 . 2 )  

where j ,  and j ,  are the components of the current density j; E, and E, are the 
components of electric field E; vz is the velocity of the fluid and p is the perme- 
ability of free space. It follows that 

and that 

We also have the equations 

ajx 
ax ay 

= o; aE, aE, - - 0. 
ax ay -+- 

The Hartmann number M ,  based on the half-width a of the duct, is defined by 

M = Boa(a/q)*. (2.7) 

3. Orientations between zero and 45" : pressure-driven short-circuited 
case 

Shercliff (private communication) made a preliminary analysis of the pressure- 
driven short-circuited case, shown in figure 1, for high Hartmann numbers. He 
considered the flow to consist of core regions, within which viscosity was 
negligible, together with vanishingly thin boundary layers on the walls. Shercliff 
argued that, as in the case of a square duct all of whose walls are perfectly con- 
ducting, the currents circulating between the fluid and the walls would be so 
great that the current content of the boundary layers on the walls would be 
negligibly small in comparison. This implies that at the edge of the core region 
near to each insulating wall the direction of current flow is parallel to the wall, 
that is jx/jy = -tan 8, and that at the edge of the core near to each perfectly 
conducting electrode the electric field is normal to the electrode, that is 
E,/E, = -tan 8. 

Within the core viscous forces are negligible, and so from (2.2)jy in the core is 
uniform at the value ( l /Bo) ( - ap/az). It follows that at the edges of the core 
adjacent to the insulating walls j ,  also is uniform, and that, in view of (2.6), j, 
is independent of x in the core regions. From these results it follows that through- 
out the core regions j ,  is uniform and the total current density j is of magnitude 
(sec 8/Bo) ( - ap/az) parallel to the insulating walls. 

28 F L M  48 
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A similar argument relates to the electric field in the core. From (2.1) E, is 
uniform in the core regions. It follows that E, is uniform at the edges of the core 
adjacent to the perfectly conducting electrodes, and that, in view of (2.6), E, in 
the core is independent of x. Consequently, throughout the core regions in the 
triangles ABE and CDF of figure 1 E, is uniform and the total electric field E is 
normal to the electrodes, and therefore, for a duct of square cross-section, parallel 
to the insulating walls. In  the Ohm's law equation 

j = cr(E+vxB) (3.1) 

for the triangles ABE and CDP, both j and E are parallel to the insulating walls, 
whereas v x B, if non-zero, is in the y direction. It follows that v, = 0 in the 
triangles and that the fluid there is at  rest. This is a result of the fact that the 
angles at A and C are 90". 

FIGURE 2. Cross-sections of rhombic ducts with vector diagrams for Ohm's law in triangles 
ABE and CDF; (a) angle BAD > go", v, < 0 in triangles; ( b )  angle BAD < go", u, > 0 
in triangles. 

I n  the case of ducts of non-square cross-section, such as the rhombic sections 
shown in figure 2, the current density j in the core in each of the triangles ABE and 
CDF is parallel to the adjacent insulating wa,ll and the electric field E is normal to 
the electrode. The vector diagrams for (3.1) take the form shown, and the core 
velocities in the triangles are non-zero. The general result is that the core velocity 
in each triangular region is positive, zero or negative, depending on whether the 
corner angle is less than, equal to or greater than 90". If the corner angle is 
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denoted by (90- q5), the core velocity in the triangle when the adjacent electrode 
makes an angle 8 with the transverse field is given by 

1 ap secOcosecOtanq5 
vz=w(-%) l+tane tan+  (3.2) 

When q5 = 8, so that the insulating wall is perpendicular to the magnetic field, E is 
zero and the corevelocity in the triangle is (l/Bi a) ( - ap/ax), as in an all-perfectly 
conducting duct. 

In  the square duct of figure 1, motion is confined to the region EBFD, where we 
expect that the flow consists of a core, within which viscous forces are negligible, 
surrounded by boundary layers along DE and FB and viscous shear layers along 
the lines BE and DF. Shercliff noted that within the core of region EBFD the 
velocity is independent of x. This is clear from the y component of the Ohm's law 
equation, j,/a = Ev +vzBO, since in the core regions j ,  is uniform and E, is 
independent of x. This result is an example of the tendency of a magnetic field to 
suppress vorticity perpendicular to itself. 

To deduce the relationship, first derived by Shercliff, between pressure gradient 
and flow rate we set up x1 and y1 axes as shown in figure 1 and integrate the terms 
of the y1 component of the Ohm's law equation with respect to x1 and yl over the 
entire cross-section of the duct. 

By virtue of the short-circuit connexion 

s" = 0 
--a 

for all xl. Throughout the core regions .jv1 = (sec 8/Bo) ( - ap/az). The volumetric 
flow rate Q is given by 

On substituting these results into (3.3) and neglecting errors due to boundary 
layers, we obtain Shercliff's approximate relation 

where vo is the mean velocity, Q/4a2. Shercliff pointed out that as O approaches 
45" the parallelogram region EBFD, which carries the flow, shrinks towards zero 
area while the flow rate remains finite. That is, the velocity distribution in the 
y direction takes the form of a delta function, in this inviscid approximation. 

Except close to the lines BE and DP, the flow in the parallelogram region 
EBFD is the same as Hartmann flow between infinite plane insulating walls 
parallel to DE, with the same normal transverse magnetic field B, cos 8 and with 
an appropriate constraint on the electric field, This may be seen from a considera- 
tion of Shercliff's (1953) compound variables 

v (= v, + B,/,u(q)B) and w ( = v, - B,/,u(ay)*). 
28-2 
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For high Hartmann numbers, v (and likewise w) is determined at one wall, varies 
(if at  all) linearly with distance from it in the field direction, and has a boundary 
layer on the other wall. The effect of a discontinuity in the value of v on the wall 
without a boundary layer is that at  a distance x from that wall in the field direction 
the disturbance extends a distance of order x/M& in the direction normal to the 
field. Assuming that the electric fieId changes abruptly on the lines BE and DF, 
we find that the velocity profile in the region EBFD is given by 

in which 

cosh ( M  cos OxJu)) 
v , = u  1 -  ( cosh(Mcos0) I '  

- apjaz 
U =  

Bt g cos B(cos 19 - sin 0) .  

(3.5) 

With McosO large, a central core of uniform velocity u is flanked by skew 
Hartmann boundary layers of thickness of order u/M cos 0. As the orientation 
approaches 45', theviscous regions in thevicinity of the lines B E  and DF coalesce, 
the skew Hartmann region vanishes and the infinite velocity predicted by (3.6) 
at 8 = 45' is avoided. The result (3.6) can alternatively be derived from Shercliff's 
expression (3.4), by ignoring the details of the flow in the viscous regions and 
simply dividing the flow rate by the area of EBFD. 

If the flow deficit due to the skew Hartmann boundary layers is allowed for but 
possible errors due to the viscous layers centred on B E  and DF are neglected, 
the volumetric flow rate Q through the duct is given by 

4u2sec20( -- 2) { 1-- 1 ] 
'= Bga McosB a 

(3.7) 

For the analysis of the flow in the neighbourhood of the lines BE and DF, the 
differential equations (2.4) and (2.5) are uncoupled and the relevant boundary 
conditions simplified by the substitutions 

V = v,+B,/p(q)*- [l/B,(ay)*] [-ap/az] [2usecO- (x+ytanB)]+Zu, 

W = v,-B,/p(g~)*+[l/B,(ar]))] [-ap/ax] [ZusecB- (x+ytanO)]-Zu. 1 (3.8) 

Assuming that for large Hartmann numbers the layers are thin, we may neglect 
a2/ax2 in comparison with a2/ay2. Then, in terms of the ( X ,  Y )  co-ordinates shown 
in figure 1, the equations for the layer centred on the line B E  become 

a2W MaW +-- = 0. (3.9) = 0; ~ 

a v  M W  
a y 2  u ax ay2 a ax 

The following boundary conditions apply: in the triangle A B E ,  V = W = 0; in 
the core of region EBFD, P = 2u, W = 0; close to the corner B the conditions are 
obscure. A plausible solution is that within the layer W is constant at zero and V is 

given by P = u( 1 + erfp), (3.10) 

where erf is the error function and p = H&Y/(4uX)3. The corresponding solutions 
for v, and B, in the layer centred on the line B E  are 

(3.11) I v, = +u(l +erfp), 

B, = + P U ( 4 ( 1 +  erfpP) - 2uu(gr]P + (PulB,) ( - a p / w  
x [2u see # - (x + y tan B)].  
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As was mentioned in $1, this solution resembles the results obtained by 
Hasimoto (1960)) Todd (1967) and Hunt & Williams (1968) for similar con- 
figurations. However, the error function solution is somewhat suspect in the 
present case on account of the obscurity of the conditions in the corners B and D, 
which affect the rdgime, not only locally, but throughout the viscous layers. 

Since erf 1.38 = 0.95, the difference in velocity between a pair of points for 
which p = +_ 1.38 is 95 yo of the total velocity change across the layer. Thus we 
may regard the locus p = 1-38, which is a parabola centred on B E  with its 
vertex at B, as the boundary of the layer. The analysis of the flow in the vicinity 
of the line DPis similar: a parabolic layer, within which w, varies in approximately 
the error function manner, emanates from D. 

In  the present solution E, is antisymmetric about the centreline of each of the 
layers. It follows that the expression (3.6) for the core velocity u in the parallelo- 
gram region, found earlier on the assumption that the electric field changes 
abruptly across the lines B E  and DF, requires no modification on account of the 
finite thickness of the layers. Similarly, in view of the antisymmetry of the error 
function, the expression (3.7) for the total volumetric flow rate through the duct 
requires no correction on these grounds. 

It is possible to make an approximate analysis of the flow in the vicinity of 
points E and P of figure 1, where the skew Hartmann boundary layers and the 
error function layers coalesce. In  terms of the (s, n) co-ordinates shown in figure 1, 
we find that in the vicinity of E 

(3.12) 1 w, = &( 1 + erfp) [ 1 - exp ( - n M cos O/a)], 

B, = &puu(q)*( 1 + erfp) [l - exp ( - nM cos O/a)] 
- 2pu(cr7)* + (p/B,) ( - 8pla.z) [2a see 8 - (z + y tan 41. 

Similar expressions may be derived for v, and B, in the neighbourhood of point F. 
We may use (3.12) to derive the following expression for EU1, the electric field 

component in the direction ED, at the wall in the vicinity of point E :  

Ell, = (sec 8/Bo (T) ( - ap/az) [l - (1 + erfpW)/2( 1 - tan 41, (3.13) 

in which ppw is the value of p at a point on the wall. Equation (3.13) may be 
integrated to yield the potential distribution along the wall AD.  The potential 
profile falls linearly from A to the vicinity of E, where its slope changes smoothly 
from negative to positive, and then rises linearly to D to satisfy the short-circuit 
condition. 

Figure 3, drawn for the case of 8 = 20" and M = 200, summarizes the solution 
obtained for the pressure-driven short-circuited case for orientations of less than 
45O. It shows the velocity profile in the y direction through the mid-point of the 
duct and some approximate current flow lines. In the two zones 1 the fluid is at  
rest and there are no boundary layers on the walls. Zone 2 is the core of a region of 
skew Hartmann flow in which the fluid moves with the uniform velocity given by 
(3.6). In  zones 1 and 2 current flows with uniform density parallel to the insulating 
walls, and the Lorentz force j x B balances the pressure gradient. 

The two zones 3 are skew Hartmann boundary layers of thickness of order 
a/M cos 8 within which the velooity rises from zero at the walls to its uniform 
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value in zone 2. The current density lies in the directions DK and LB in the fluid 
a t  the walls, reverses within the boundary layers, and at the outer edges of the 
layers is identical with that in zone 2. 

The two zones 4 are layers parallel to the applied magnetic field of thickness of 
order a/M&, which spread parabolically from corners B and D but do not diffuse 
in the downstream direction. Within the layers the veIocity increases in approxi- 
mately the error function manner from zero in the two zones 1 to its uniform value 
in zone 2. 

U 

vz 
---c 

------- 

FIGURE 3. The form of the viscous layers parallel to the magnetic field, approximate 
current flow lines and a velocity proftle for the pressure-driven short-circuited case for 
6 < 45' (drawn for the case of 0 = 20' and M = 200). The thickness of the skew Hartmann 
boundary layers is exaggerated. 

The two zones 5 are skew Hartmann boundary layers of varying strength. Their 
current contents and the velocity jumps across them increase from zero at  G and 
H to the full values corresponding to the skew Hartmann boundary layers of 
zones 3 at K and L. 

4. Orientations between zero and 45" : electrically driven case without 
axial pressure gradient 

Analysis closely similar to that given in 5 3 may be developed for the case of a 
square duct with walls of mixed conductivities when the flow is electrically driven 
by a potential difference V applied between the electrodes, in the absence of an 
axial pressure gradient; Figure 4, which is drawnfor the case B = 20" and M = 200, 
summarizes the results and shows approximate current flow lines. The form of the 
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velocity distribution is found to be identical to that in the pressure-driven short- 
circuited case. The solution closely resembles that found theoretically by Hunt & 
Williams (1968) for electrically driven flow between offset parallel line electrodes 
set in infinite plane insulating walls in the presence of a transverse magnetic field. 

In  the two zones 1 the fluid is at  rest, at uniform potential and current free. 
There are no viscous forces, Lorentz forces or pressure forces. Zone 2 is the core of 
a region of skew Hartmann flow in which the fluid moves with uniform velocity 
given by the equation 

(4.1) 
V 

2aB,(cos 6' - sin 6') ' 
a=--  

The electric field is perpendicular to the transverse magnetic field and is equal and 
opposite to the e.m.f. v x B due to motion, so that the zone is current free. All the 
terms of the Navier-Stokes equation are zero. 

FIGURE 4. Approximate current flow lines for the electrically driven case without axial 
pressure gradient for 0 < 45" (&awn for the case of 6' = 20" and M = 200). The thickness 
of the skew Hartmann boundary layers is exaggerated. 

The two zones 3 are again skew Hartmann boundary layers of thickness of 
order a / N  cos 6'. In these layers the electric field vector changes from being in the 
directions DE and FB in the fluid at the walls to being perpendicular to the 
transverse magnetic field at the outer edges of the layers. The current density, 
which is in the directions DB and PI?) has its maximum value at  the walls and 
decreases exponentially to zero at  the outer edges of the layers. It is everywhere of 
such a value that the resulting Lorentz forces balance the local viscous forces due 
to the variation of velocity. 
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The two zones 4 are again viscous layers of thickness of order a/M* lying 
parallel to the applied magnetic field within which the velocity varies in approxi- 
mately the error function manner. The electric field varies from zero in the two 
zones 1 to its uniform value in the direction normal to the applied magnetic field 
in zone 2. Within the layers current flows predominantly in the directions DF and 
EB with a density which tends to zero towards the edges of the layers. The dis- 
persion of the layers and of the current within them with increasing distance from 
the corners B and D is such that the small current density component j, gives 
rise to Lorentz forces which everywhere balance the local viscous forces. The 
current content of each of the layers is equal to that of one of the skew Hartmann 
boundary layers. The validity of the error function solution is again subject to 
uncertainty owing to the influence of the corners B and D. The two zones 5 are 
again skew Hartmann boundary layers of varying strength. 

When allowance is made for the velocity deficiency due to the skew Hartmann 
boundary layers, the following approximate result is found for the mean velocity 
of flow through the duct at high Hartmann numbers: 

A topic of interest in experimental work is the effect of orientation and field 
strength on the apparent conductance of unit length of the duct, defined as the 
current flowing between the electrodes per unit length of the duct divided by the 
applied potential difference. The ratio of the apparent conductance GM,@ at a 
Hartmann number M and orientation 15' to the conductance Go at M = 0 is given 

1 
M(COS 8 - sin 0 )  ' 

-- G, 0 - 
Go (4.3) 

which shows that the apparent electrical resistance of the duct at  a particular 
orientation between zero and 45" is directly proportional to the Hartmann num- 
ber, provided it is large. 

The electrically driven case without axial pressure gradient is an example of 
the magnetohydrodynamic phenomenon of current channelling, whereby in the 
absence of pressure gradients the velocity distribution is such that current flow is 
confined to the direction parallel to the applied magnetic field, except in regions 
of varying velocity gradient where viscous forces are present to balance the 
Lorentz forces due to the crossing of the magnetic field by the current. This 
channelling effect was noted by Braginskii (1960) and discussed by Moffatt (1964) 
and Hunt & Williams ( 1968). 

The solution of the pressure-driven short-circuited case may be derived by 
superposition from that of the electrically driven case without axial pressure 
gradient. We consider the regime in which the potential difference V between the 
electrodes has been reversed and an appropriate pressure gradient keeps the fluid 
a t  rest. Current of uniform density gV7/2a flows parallel to the insulating walls, 
and the required pressure gradient is given by 

(4.4) - aplaz = (a v p a ) ~ ,  cos e. 
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This r6gime and the electrically driven case without pressure gradient, shown in 
figure 4, are both solutions to the same linear differential equations. It follows 
that the sum of these two regimes is a solution to the equations subject to boun- 
dary conditions which are the sum of those applying to the two regimes separately. 
In  the resulting situation the velocity distribution is identical to that of the 
electrically driven case without axial pressure gradient (since the second regime 
is stationary), the electrodes are both at  the same potential and there is an axial 
pressure gradient given by (4.4). This is evidently the pressure-driven short- 
circuited case, shown in figure 3. If we use (4.4) to substitute for V in the expres- 
sions for core velocity (4.1) and mean velocity (4.2) in the electrically driven case, 
we obtain the results found in $ 3  for the pressure-driven short-circuited case. 

5. Orientations between 45O and 90" : pressure-driven or electrically 
driven 

Figure 5 shows the square duct at an orientation between 45" and-90" and 
defines the new (z, y) and (q, yl) co-ordinate systems. The perfectly conducting 
electrodes AB and CD overlap in projection in the direction of the applied 
magnetic field. Exactly similar reasoning to that given in 8 3 suggests that the 
fluid in the triangles is again at  rest. In  the pressure-driven short-circuited case 
the j x B forces in the triangles balance the pressure gradient. In the electrically 
driven case without axial pressure gradient the triangles are at  uniform potential 
and current free. 

/ I  / / R  / 
I 

FIGURE 5. Cross-section of square duct for 0 > 45', showing one of 
the shear layers. 
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On grounds similar to those given in 5 3 for the case of 8 below 45O, we infer 
that in the central parallelogram region EBFD the flow is the same as Hartmann 
flow between infinite planeperfectly conducting walls parallel to OF, with the same 
normal transverse magnetic field B, sin 8. If Msin @is large (where M = Boa(a/r)* 
as before), the flow consists of a core of virtually uniform motion flanked by 
thin boundary layers of thickness of order a /M sin 8. We consider such a situation 
in which the flow is driven by a potential difference V between the perfectly 
conducting walls and an axial pressure gradient. Either driving agency may be 
put to zero to yield the pressure-driven short-circuited case or the electrically 
driven case without axial pressure gradient. We find the following results for the 
core of the flow: 

(5.1) i V~ = (l /B$a) ( - + / a x )  + V cos B/2aB0, 
jxl = - (cos BIB,) ( - apl8.z) + a V sin2 8/2a, 

jVl = (sin B/B,) ( -  ap/az) + (TV sin 0 cos 8/2a. 

Applying these results to the square duct we find that in the electrically driven 
case without axial pressure gradient, shown in figure 6, the total current density 
in the core of region EBFD is aV sin 8/2a, parallel to the transverse magnetic field. 
This is another example of current channelling by a magnetic field. The total 
electric field in the core of the parallelogram is found to be V/2a normal to the 
perfectly conducting walls. 

FIGURE 6 .  Approximate current flow lines and velocity profile for the electrically driven 
case without axial pressure gradient for 19 > 45’. 

For the pressure-driven short-circuited case, figure 7, the total current density 
in the core of region ERFD is ( I/Bo) ( - ap/a.z), perpendicular to the transverse 
magnetic field. It gives rise to Lorentz forces which balance the pressure gradient. 
EY1 is zero everywhere, and from Ohm’s law we find that Ex, and, consequently, 
E are zero in the core of the parallelogram. 

We now consider the regimes prevailing near to the lines DE and FB in 
figure 5 .  In  both the electrically driven case without axial pressure gradient and 
the pressure-driven short-circuited case there are discontinuities across the lines 
DE and F B  both in the velocity and in the component of electric field parallel to 
the applied magnetic field. The presence of these discontinuities suggests that 
in the electrically driven case there are thin shear layers, oentred on the lines DE 
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and .FB, resembling those discussed by Moffatt (1964), Waechter (1968) and 
Hunt & Stewartson (1969) in similar configurations. In  the pressure-driven short- 
circuited case a pressure gradient and associated current flux across the layers are 
superimposed, but the flow structure is identical. 

FIGURE 7. Approximate current flow lines for the pressure-driven 
short-circuited case for 6' > 45'. 

We may, without exact analysis, determine the order of magnitude of the 
thickness of each layer and of the velocities occurring within it. We consider the 
electrically driven case. The y component of the Ohm's law equation for it point 
within the layer of thickness 6 centred on DE in figure 5 is 

jU& = Eu,+vzaBo, (5.2) 

where the suffix 6 denotes a quantity within the layer. Applying the equation 
div j = 0 to  the layer and assuming that j, is of the same order in the layer as in 
the parallelogram, we find the approximate result jv6 = 0 (6/a) (aVsin e/za). 
Since in steady flow fE  . dl is zero around the path PQRSP, and E is zero along 
RS and SP, and 8, is of value P sin 8 /2a  in the core of the parallelogram, we have 
Eua = 0 (a/&) (VsinO/2a). Equation (5.2) then yields the result 

The Navier-Stokes equation for the layer has the form 

Neglecting a2/ax2 in comparison with a2/ay2 within the layer on the assumption 
that the layer is thin, and substituting for vz8 andj,, we find that 

S = O(a/Mt) ,  (5.5) 

which confirms that for large Hartmann numbers the layers are indeed thin. 
Since the uniform core velocity in the parallelogram region is given by 

us, = P cos 8/2aB,, 
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it then follows that = ~ ( ~ - t t a n ~ ) ,  
% 

which shows that large velocities occur within the layer. The velocity distribution 
across the duct is approximately as shown in figure 6. 

An approximate expression for the total flow rate through the duct may be 
derived from the double integration over the cross-section of the duct of the 
x1 component of the Ohm's law equation. 

For the electrically driven case without axial pressure gradient the sole contribu- 
tion to the integral on the left-hand side arises from the uniform component in 
the parallelogram region. For all values of yl, jZl = CT V sin2 812. 

the electrode potential difference. The total flow rate Q is equal to 

Equation (5.7) then yields the result 

Q = (2aV/B0) (sin8+cos8). (5.8) 

This expression is subject to relative errors of order ( M  sin 8)-l on account of the 
skew Hartmann boundary layers and of order M-4 due to the shear layers. 

The volumetric flow rate Q, through the core of the parallelogram region is 
given by 

On subtracting Q, from the total flow rate Q, we obtain the flow rate 2&, through 
the two shear layers. Thus 

2Q, = 2aV/B0 sin 8. (5.10) 

For all orientations between 45" and 90" most of the flow is carried by the layers: 
the proportion of the flow which is carried by the core has its maximum value of 
17 % when 8 = 67Q". 

As in the case of 0 less than 45", it is interesting to examine the effect of orienta- 
tion and field strength on the apparent conductance of unit length of the duct. The 
ratio of the conductance G , ,  at Hartmann number 31 and orientation 8 to that 
at  M = 0 is found to be 

GM,,/G0 = sinB(sin6-cosB). (5.11) 

This result is independent of the Hartmann number provided it is large. This 
contrasts with the case of 8 less than 45'' where the conductance at a given 
orientation is inversely proportional to M because all the current has to flow along 
the skew Hartmann boundary layers on the insulating walls, as in figure 4. 

&, = v5 x Area EBPD = ( 2aV/B0)  cos 8( 1 - cot 0). (5.9) 
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To deduce the volumetric flow rate through the duct in the pressure-driven 
short-circuited case shown in figure 7, we again use the technique of the double 
integration of the Ohm's law equation, noting that both the triangles and the 
parallelogram contribute to the current integral and that, by virtue of the short- 
circuit connexion, 

for all values of yl. The result is 

4a2 
Q = ( - 2) (1 + tan8). (5.12) 

This expression is subject to the same relative errors as (5.8). The flow rate 2Qs 
through the two shear layers is given by 

(5.13) 

The presswre-driven short-circuited regime may again be derived from the 
electrically driven case without axial pressure gradient, figure 6, by superposing 
an appropriate uniform current density parallel to the insulating walls. 

6. Experimental aims and apparatus 
Experiments were performed to test the theory developed above for the 

pressure-driven short-circuited situation for orientations between zero and 90" 
at large Hartmann numbers. The f i s t  aim was to investigate the relationship 
between the pressure gradient, the transverse magnetic field strength, the mean 
velocity of flow and the orientation of the duct to the field. The theory requires 
modification to allow for the imperfection of the short-circuit connexion between 
the electrodes in the experimental ducts. On the assumption that the electrodes 
themselves remain equipotential surfaces, which was reasonably valid in the 
exgerimental ducts, the approximate relationships between the pressure gradient 
and the mean velocity wo (=  Q/4a2) take the following forms: 
for 8 < 45" 

B; fluo e 
- (6.1) 

aP 
ax 

-- - 

cos 8 - sin 8 
and for 45" < 8 < 90" 

Bg g w 0  

(1 +(~/a,) (1 +tan 8)'  
- aP 

ax 
--- 

in which G, denotes the conductance of the external circuit per unit length of duct. 
Equation (6.1) obviously fails when 8 is very close to 45". For the case of zero 
orientation with an imperfect short-circuit the following relationship may be 
deduced from the work of Hunt & Stewartson (1965) : 

Bg uw0 -2 = 
az ( l+a /G, )  [ l - ( l + u / G c ) / M - O ( M - ~ )  ...I' 
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The expressions (6.1) and (6.3) are consistent when 8 = 0 for large values of M .  
When 8 = 90”, no current flows in the short-circuit connexion and the following 
approximate expression derived from Hunt’s (1965) analysis requires no altera- 
tion : 

- 

The second aim was to gain more direct information about the regimes within 
the duct by observing the potential distribution on one of the insulating walls. 

Mercury was chosen as the working fluid and two experimental ducts designed. 
To achieve a continuous highly-conducting interconnexion between the elec- 
trodes, each duct was machined from solid round copper bar. The outside dia- 
meter was limited by the magnet gap of l+ in. The choice of the size of the square 
channel within the copper involved a compromise between increase in the 
Hartmann number and increase in the conductance of the ‘short-circuit ’ con- 
nexion. As has been shown experimentally by Baylis (private communication), 
the layer of amalgam which forms on a copper surface exposed to mercury leads 
to extremely low contact resistance at the interface. The assertion by Glaberson, 
Donnelly & Roberts (1968) that copper would be dissolved by mercury at a 
prohibitive rate is false. 

Force fit into‘Perspex’ Hypodermic tubing 
, O.D. 

FIGURE 8. Transverse section of the 4 in. duct in 
position in the magnet gap. 

In the first duct,, shown in cross-section in figure 8, the flow channel was about 
in. square by 15 in. long. The maximum attainable Hartmann number was about 

230, while the conductance of the copper per unit length of duct was about 15 
times that of the mercury. The bottom of the channel was insulated with a layer 
of ‘Sellotape’ adhesive tape. Six flush pressure tappings were located at  2 in. 
spacing along the centreline of the ‘Perspex’ cover. One of the tappings was also 
used for potential observations. The cover was fixed in place with ‘Araldite’ 
adhesive, but a succession of slow leaks occurred at  the joints. 
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The second duct, shown in figures 9 and 10, incorporated an improved method 
of sealing the cover and additional flush tappings for the observation of potential 
at a series of positions across one insulating wall. The side of the square channel 
was about 3in.: the maximum attainable Hartmann number was 159, and the 
ratio of the conductance of the copper to that of the mercury was 21.8. The ohannel 
milled out of the copper ended 1 in. beyond the edges of the magnet poles, and the 
mercury flowed in and out through t in .  diameter axial bores from the ends. The 
channel was closed with a ‘Tufnol ’ cover, sealed to the copper with a continuous 
‘0’-ring. Throughout the tests no leakage occurred at  the seal. As shown in 
figure 9, the cover carried five equally spaced pressure tappings, PI to P5, along its 
centreline, and five potential tappings, V, to V,, all of &in. bore. 

FIGTTRE 9. Axial section of the Q in. duct and the supporting frame. 

Flexible P.V.C. tubing 
0.062 in. I.D. x 0.095 in. O.D. 

0.070 in. dia. 

1.44 in. dia. 

‘Sellotape’ insulation 
FIGURE 10. Transverse section of the Q in. duct in position in the magnet gap. 
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The electromagnet used in the experiments had a gap of 1; in. and rectangular 
pole faces measuring 12 in. by 5 in. The maximum attainable flux density at the 
centre of the gap was 1-27 webers/metre2. 

Header tank with 

FIGURE 11. The mercury flow circuit. The magnet and tanks are shown in section. 

The mercury flow circuit, shown in figure 11, incorporated a double weir, 
constant head system. The advantage of this arrangement over that described 
by Shercliff (1956) was that small fluctuations in the throughput of the pump 
would cause negligible changes in the mercury levels in the two Perspex tanks, 
so that very steady flow would prevail. The rate of overflow in the header tank 
was kept conveniently small by adjusting a by-pass loop around the pump. The 
use of p.v.c. tubing of 4 in. bore and& in. wall for the main pipework simplified the 
assembly and adjustment of the rig. The flow rate was indicated by a calibrated 
and screened electromagnetic fl owmeter. Pressure differences were measured 
with a conventional two-fluid inclined tube manometer, using methylated spirits 
over mercury. 

Full details of the apparatus and experiments are given by Alty (1966). 
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7. 8 in. duct: observations 
The axial variation of pressure gradient, due to entry effects and non-uni- 

formity of the magnetic field, was investigated with the 8 in. duct at zero orienta- 
tion and a Hartmann number of 214 in tests at  a succession of Reynolds numbers 
Re ,  (based on the mean velocity vo and the half-width a of the duct) up to 2600. 
Even at  the highest flow rate the pressure gradient measured between successive 
pairs of tappings was sensibly uniform along the duct, suggesting that the flow 
regime established itself very rapidly on entering the magnetic field. The ob- 
served pressure gradients were consistently a few percent higher than (6.3) 
predicts. In  the subsequent tests with the &in. duct the pressure gradient was 
measured between the first and sixth tappings, located respectively 2 and 22 duct 
widths downstream of the entry into the magnet gap. 

1.0 0 0 0 

- aplaz 
Froin Hunt & 
Stewartson's theory 

0 I000 2000 3000 
0.6 

Re, 

FIGURE 12. Graph of non-dimensional pressure gradient against Reynolds number 
(Re, = pwoa/7) for the &in. duct a t  0 N 0, M = 228. The straight line represents the 
approximate expression _ _  

- appz 
M 

derived from Hunt & Stewartson's (1965) theory. 

Tests were made at  a Hartmann number of 228 to reveal the variation of 
pressure gradient with flow rate a t  zero orientation. In  figure 12 the results are 
plotted non-dimensionally and compared with Hunt & Stewartson's theory, 
using an estimated value of 0.065 for v/Gc for the +in. duct. The results are 
consistently about 5 yo higher than predicted. 

In  tests at orientations of +89O and -91", observations were made of the 
variation with flow rate of the pressure gradient and of the potential difference 
A# between the mercury at  the mid-point of the insulating cover and the elec- 
trodes. Aq5 was measured between one of the pressure tappings and a terminal on 
the axis of symmetry of the cross-section of the copper duct. The terminal would 
be a t  the (average) electrode potential since at  this orientation the short-circuit 
connexion carries no current. The Hartmann number was 227 and the Reynolds 
number ranged from about 1000 to about 7000. Positive and negative orienta- 
tions were used to reveal any possible asymmetry in the duct or magnetic field. 

29 F L M  48 
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c 
[: 

0 2000 4000 6000 

Re, 

FIGURE 14. Graph of non-dimensional potential difference between the mid-point of one 
insulating wall and the electrodes against Reynolds number for the + in. duct at  0 N .+ go', 
M = 227. The straight line represents the approximate expression 

derived from Hunt's (1965) theory. 0, 0 = 89'; 0, 6 = -91'. 

A ~ J ~ / B ~ W ~ U  = 0*434[0.3 +&.-*I-', 
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The results are plotted non-dimensionally and compared with Hunt’s theory in 
figures 13 and 14. 

Figure 13 shows that the observed pressure gradient agrees closely with 
Hunt’s theory at low Reynolds numbers, but at higher flow rates exceeds the 
theoretical prediction by a factor which increases with Reynolds number, 
reaching a value of about 1.4 at Re ,  = 7000. The discrepancy between the results 
for positive and negative orientations a t  the higher Reynolds numbers is insigni- 
ficant since at these flow rates the pressure gradient and flow rate fluctuated 
erratically. The observations were made in relatively tranquil periods. By 
contrast, the potential observations taken during the same runs showed no 
major deviations from Hunt’s theory. In  figure 14 the discrepancies at  the lowest 
and highest flow rates may be attributed to experimental error. 

Since the entry length associated with Hunt’s peaked velocity distribution is 
probably many duct widths in the present range of Reynolds numbers, it is 
highly likely that the duct length over which the average pressure gradients were 
observed included a region of developing flow. The large average pressure 
gradients observed would then be the result of enhanced currents circulating in 
the mercury in the settling region. The increase in settling length with flow rate 
would account for the divergence between experiment and theory with in- 
creasing Reynolds number. The close agreement in the case of the potential 
observations suggests that a t  the cross-section at which the potential measure- 
ments were made the flow regime resembled that predicted by Hunt, even at  the 
higher Reynolds numbers. Hunt (1967) made direct measurements of the velocity 
profiles, using probes, which also indicated that the theory was qualitatively 
correct. 

The fluctuations observed at the higher flow rates suggest that at  some position 
along the duct certain regions of the flow, probably the developing high velocity 
boundary layers, became unstable. Such instability is not surprising in view of 
the contorted shape predicted by Hunt for the velocity profile in the boundary 
layer on each insulating wall. The continuity of the results suggests that there was 
not a sudden onset of instability throughout the flow but rather that, as might be 
expected, the turbulence originating in the boundary layers propagated only 
very slowly into the developing core of uniform motion. Thus it would have only 
a minor effect on the circulating currents and on the associated pressure gradient 
and wall potential. 

8. 8 in. duct: pressure gradient observations 
When the 4 in. duct developed leaks, the work was continued with the gin. duct. 

Observations were made of the variation of pressure gradient with orientation at  
three constant Reynolds numbers, approximately 1000, 2900 and 4440, at each 
of two Hartmann numbers, 120 and 159. The pressure gradient was measured 
between tappings Pz and P,, locatedrespectively 8 and 24 duct widths downstream 
of the entry into the magnet gap, as shown in figure 9. Typical results appear in 
non-dimensional form in figures 15(a) and (b) .  The theoretical curve for the 
Hartmann number of 120, using the experimentally determined value of 0.046 

29-2 
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for the conductivity ratio a/C*',, is included in figure 15 (a). The theoretical curve 
for the Hartmann number of 159 would be about 0.2 % lower for orientations 
below 45" and unchanged for orientations above 45". The values given by Hunt's 
expression (6.4) for 6' = 90" are also shown. 

In  figure 15(a), for the constant Reynolds number of 1000, the discrepancy 
between theory and experiment remains closely constant at about 0.085 for 
M = 120 and 0.065 for M = 159 for orientations up to 35". Between 50" and 70" 
the discrepancy is again almost constant, but at  the increased value of about 
0.13 for M = 120 and 0.11 for M = 159. The values at  90" exceed Hunt's pre- 
dictions by about 10 yo. The corresponding curves for the Reynolds numbers of 
2900 and 4440 are similar, showing the same constant vertical separation of about 
0.02 between the curves for the Hartmann numbers of 120 and 159 for all orien- 
tations. Figure 15(b) shows that at  the constant Hartmann number of 120 the 
non-dimensional pressure gradient is insensitive to Reynolds number for orienta- 
tions up to about 30", but thereafter increases with Reynolds number at  a rate 
which itself increases with orientation. 

Thus for orientations up to about 30" the non-dimensional pressure gradient 
exceeds the theoretical by an amount which depends on the Hartmann number 
but is almost independent of both orientation and Reynolds number. The 
discrepancies observed suggest a correction of order M-I to the expression (6.1). 
The results obtained with the +in. duct at  zero orientation, which showed a 
discrepancy of 0.05 at M = 228, are consistent with such a correction. 

9. 3 in. duct: potential observations 
The theory described in 55 3 and 5 predicts a distribution of electric potential 

along either insulating wall which, unlike the pressure gradient, is crucially 
dependent on the velocity distribution over the cross-section of the duct. To 
throw light on the flow profiles, without the use of probes, observations were 
therefore made of the potential distribution along one insulating wall for a 
range of Orientations of the duct. 

For orientations below 45" we refer to figure 1. The theory indicates that the 
potential profile along AD closely resembles that which would prevail if the 
viscous layers centred on BE and DF were lines of discontinuity. In this 'bound- 
ing ' profile the potential falls linearly from zero at  A to the value 

-V, = -(2atan8secB/Boa)( -i3p/az) 

at E and then rises linearly to zero at  D. The actual potential profile is rounded in 
the vicinity of E, in accordance with (3.13), owing to the finite thickness of the 
viscous layer centred on BE. 

For orientations above 45" we refer to figure 7. The theory indicates that in the 
bounding profile the potential falls linearly from zero a t  A to the value 

- V, = - (2a sec 8/Bo a) ( - 8pla.z) 

a t  D and then rises abruptly across the shear layer centred on DE to satisfy the 
short-circuit condition. The actual potential profile is rounded in the vicinity of D. 
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For each orientation we may non-dimensionalize the potential with respect to 
the peak potential difference V, of the bounding profile, and make allowance for 
the imperfection of the short-circuit connexion. We find that for orientations 
below 45" the non-dimensional bounding potential profile along the wall AD falls 
linearly from - v /2Gc  tan 6' at A to - 1 - g/2Gc tan 6' at E and then rises linearly 
to + v /2Gc tan 6' a t  D. For orientations above 45" it falls linearly from 

- ( c /2Gc)  cos &sin 8 + cos 6') at A to - 1 - (g /2Gc)  cos 6'(sin B + cos 8)  

close to D, and then rises discontinuously across the shear layer to 

+ (g /2GC)  cos O(sin B + cos 0) 
a t  D. 

To minimize entry effects and instability, all the potential observations were 
made at the low Reynolds number of 800. The Hartmann number was held at  the 
maximum attainable value of 159. Runs were made at orientations ranging from 
- 80" to + 90" in increments of lo", together with runs a t  & 45" and at  180' and a 
series of runs around zero orientation. In  each run the p.d. was measured between 
a terminal screwed into the copper on the axis of symmetry of the cross-section 
of the duct and each in turn of the five potential tappings V, to V, of figure 9. In  
the case of the runs at zero and positive orientations the p.d.s between the 
terminal and the heads of a pair of the cover fixing bolts shown in figure 10 were 
measured to show the effect of the finite resistance of the copper duct. For each 
orientation the potential observations were non-dimensionalized with respect 
to the peak potential difference V, of the appropriate theoretical bounding poten- 
tial profile for a perfectly short-circuited duct, using extrapolated experimental 

30") & 45") 2 60" and & 80" are shown 
in figures 16 (a) to (c) ,  together with the theoretical non-dimensional bounding 
potential profles, constructed using the experimental value 0.046 for cr/Gc. The 
results for the other orientations conform with the trend. For each positive 
orientation the non-dimensional potentials (relative to the terminal) at the 
tappings V, to y5 are plotted at the appropriate positions, marked 1 to 5, along the 
axis representing the wall AD. The theoretical potential profile along A D  for a 
given negative orientation is identical to that for the corresponding positive 
orientation if the potential differences are reversed and the profile plotted in the 
reverse direction along AD. The results for negative orientations are plotted in 
this way at locations - 1 to - 5 in figures 16 (a) to (c). Since the arrangement of 
the potential tappings in the cover was asymmetrical, the positive and negative 
orientations together gave ten distinct points on each potential profile. 

Except for the case of f 10") the potential profiles for orientations up to 45" 
conform closely to the theoretical profiles. In  particular, the agreement along the 
part AE of the wall provides direct evidence that the mercury was virtually at 
rest in the corner regions. 

The results for & 10" indicate the failure of the theory as the orientation ap- 
proaches zero. The approximately triangular potential profile predicted by the 
theory for any non-zero orientation is incompatible with the profile at  zero 

values of ap/az. 
The results for orientations of f lo", 
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orientation, which is antisymmetric about the mid-point of AD. However, the 
observed potential gradient between A and E is consistent with the theory. This 
suggests that even at  this small orientation there are stagnant regions in the 
corners. 

D 
Positions of 

potential tappings O N +  

I I IF----+ 
2 3 4  5 D 

- 5  I 0 I I  I I  

I 
I 

-0.2 - 

-0.4 - 

v/ vo 
-0.6 - 

Positions of 

-0.8 - 

- 1.2 

FIUURE 16. For legend see p. 457. 
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As the orientation rises from 45Oto 80" the potential profiles depart increasingly 
from the theoretical bounding profiles. However, over the parts of the wall 
nearer to A the potential gradients do conform closely to the theory. This 
indicates that for these orientations there are again regions of stationary mercury 
in the corner A ,  but that with increasing orientation the shear layer emanating 
from D broadens progressively, with the result that the potential falls along a 
diminishing part of the wall AD and then rises gradually across the diffuse layer. 

The profile for 280" shows the failure of the theory as the orientation 
approaches 90". The potential profile departs from the skew distribution 

Positions of 
potential tappings 

D 1  2 3 4 5 
0 I I I I 

1 1  
I 

- 5  -4 - 3  -2  -1-I 

kt7=60° 

0.3 I I I I 

0.2 

-0.1 

- 0.2 

I 1 I I 

FIGURE 16. For legend see p. 457. 
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FIGURE 16. Non-dimensional potential profiles along the insulating wall AD for the $ in. 
duct for M = 159 and Re, N 800, ( a )  0 , O  = + 10"; n,B = - 10": with theoretical bounding 
profile, modified to allow for the finite resistance of the current return path. Reference 
p.d. = V, = (2atan0sec0/B04(-ap/ t3z) .  ( b )  As (a )  but: 0 , B  =+30°;  n,6 '= -30° ;  

V, 0 = - 80'. Reference p.d. = Vo = (2a sec €'/Baa) ( - apl8.z). (d) Orientations near to zero, 
with an approximate theoretical profile derived from Hunt & Stewartson (1  965), allowing for 
the finite resistance of the current return path. Reference p.d. = Vo = (a/Boa)  ( -ap/az).  
0, 6' = 0; A, 8 = -2"; m, 0 = - 3 t " ;  v, 0 = -@'. ( e )  0 = go", with Hunt's (1965) 
theoretical profile. Reference p.d. = Vo = a2( - ap/az)/(Mav)t .  0, Vo based on experimental 
pressure gradient ; 0, V,  based on theoretical pressure gradient. 

A, o = +450; v,  o = -4450. (c) AS ( a )  but: 0, o = + G O O ;  0. o = -600; a, o = +soo; 

predicted by the theory and approaches the symmetrical shape which it must 
take at  90". 

The results for a series of runs at orientations close to zero and 180" are given in 
figure 16 ( d ) .  The observed potential differences were non-dimensionalized with 
respect to a reference p.d. V, given by V, = (a/B,a) ( -  aplaz), the appropriate 
value for the pressure gradient again being found by extrapolation from the 
earlier experimental results. 

In figure 16 (d) the curve for zero orientation is a mean profile derived from 
three complete series of observations. The profiles for zero orientation with the 
magnetic field reversed and for 180" are of similar form after reversal of sign. The 
skewness of the profile for zero orientation suggested that the duct was actually 
at  a small positive orientation, but the profiles obtained from further runs at 
settings of - 2", - 3$", and - 42" showed that at  no setting would a symmetrical 
potential profile be obtained. The skewness was evidently due to some cause 
other than zero-error in orientation. 

A theoretical potential profile along one insulating wall may be derived from 
Hunt & Stewartson's (1965) work. They derived a relationship between the core 
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velocity v, and the mean velocity vo, which is independent of the external circuit 
and for a square duct has the form 

v o =  w,[l-ra-iM- 0.956 O(M-4) ...I. 
From (9.1) and the relationship (6.3) between pressure gradient and mean velocity 
for an imperfectly short-circuited square duct we have 

1 v, = ~ ‘xF(-g) [ 1 + ~ + ( 0 9 5 6 ’ - ~ ) ~ + O ( i M - t ) . . .  . 
0.956 

(9.2) 

Since the core current is given by j, = ( l/Bo) ( - apjax), it follows from Ohm’s 
law that the electric field EYc in the core is given by 

(9.3) 

Since E, is independent of x except in the boundary layers on the electrodes, it 
follows that along the major part of the insulating walls the potential varies 
linearly, with the gradient given by (9.3). The straight line in figure 16 (d) ,  cutting 
the potential axis at  V/V, = 0.131, represents this bounding potential profile, 
non-dimensionalized with respect to V,. 

Hunt & Stewartson’s analysis shows that at  a distance of 3a/M* from the 
electrodes the velocity has risen to over 97 yo of the core velocity. This distance, 
which we may regard as the theoretical boundary-layer thickness, is indicated 
by the points El and E, in figure 16 (d) .  Within the boundary layers the non- 
dimensional potential would fall short of the bounding profile and vary smoothly 
towards the electrode non-dimensional potentials of f u/G,, approximately as 
shown. 

Figure 16 (d)  shows two major discrepancies between experiment and theory. 
First, the observed potential gradient over the central part of one insulating wall 
exceeds the theoretically predicted value by a factor of about 10. Secondly, the 
observed potential profiles, far from consisting of a linear central region flanked 
by thin boundary layers, show continuous non-linearity across the entire 
insulating wall. 

A possible cause of the asymmetry of the profiles, but not of their unexpected 
magnitude, was the irregularity of the edge of the Sellotape strip forming the 
insulation on the wall of the duct opposite the Tufnol cover. Hunt & Stewartson 
showed that the effect of making the walls perpendicular to  the magnetic field 
conducting over a length of order a/H* from the corners would be to reduce the 
potential difference across the boundary layer on each electrode. In  the experi- 
mental duct this effect would occur near the Sellotape strip and gradually diminish 
towards the Tufnol wall, where the potential profile would be distorted and 
slightly flattened, but not steepened. 

The form of the potential profiles has implications for the velocity distribution. 
The observed profiles can be approximately described by the equation 

V = (0.15a/B0u) ( -  ap/ax) sin (myla). 
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If the currentj, is taken to be uniform at the value (l/B,,) ( - ap/az) in the core of 
the flow, then Ohm's law indicates that the fluid velocity there is approximately 
given by 

The viscous force per unit volume due to such a variation of velocity would be of 
order N-2( - ap/az), which for large Hartmann numbers is small compared with 
- ap/& This result is consistent with the assumed value for j, in the core. The 
shapes of the experimental potential profiles and of the corresponding deduced 
velocity profile are not understood. As they conflict so fundamentally with the 
expected regime of a core and boundary layers it is important that further tests 
be made to clarify the situation. 

In  the tests at  zero and positive orientations the potentials of the two cover 
fixing bolts, plotted non-dimensionally at  A and D in figures 16 (a) to (a), agreed 
very closely with the theoretical values, which are shown by short lines across 
the potential axes at A and B. This agreement co&ms the theoretical relation- 
ships between the pressure gradients and the total circulating currents. 

For the orientation of 90" the observed potentials, non-dimensionalized as in 
Hunt's (1 965) theoretical analysis by dividing by the reference potential difference 
given b y 6  = a2( - ap/az) / (Mq)h,  are plotted in figure 16 (e). Hunt's profile for the 
potential distribution is also shown. The experimental points marked with 
circles were derived by using in the calculation of V, an extrapolated experimental 
value of the pressure gradient. The points marked with squares were deduced 
using for the pressure gradient the value predicted by Hunt's theory for the 
relevant flow rate and magnetic field: they give the potential distribution non- 
dimensionalized with respect to mean velocity. The results differ because even 
when extrapolated down to a Reynolds number of 800 the experimental pressure 
gradient at 90" exceeded Hunt's predictions. When non-dimensionalized with 
respect to mean velocity the experimental results agree with Hunt's theory to 
within about 4 %. This close agreement supports the results obtained with the 
$in. duct and described in $7. The current flow within the copper from B to A 
and from C to B accounts for the small negative potentials at  A and D, measured 
at the bolt heads. 

10. Conclusion 
The experimental results described in this paper suggest that the approximate 

theoretical analysis developed for the flow in square ducts with walls of mixed 
conductivities at  arbitrary orientation to a transverse magnetic field at  high 
Hartmann numbers is substantially true. The continuous change in the regime 
as the orientation of the two electrodes to the magnetic field is increased from zero 
to 90" is indicated. 

At general orientations from zero to about 30" the non-dimensional pressure 
gradient is found to exceed the theoretical by an amount which is almost inde- 
pendent of both Reynolds number and orientation but varies with Hartmann 
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number approximately as M-l.  Between 50" and 70" the discrepancy for low 
Reynolds numbers is again almost constant but at an increased value: for higher 
Reynolds numbers it increases with orientation. Over the entire range of orienta- 
tions and for all Reynolds numbers used, there is a constant difference in the 
observed values of the non-dimensional pressure gradients for Hartmann numbers 
of 120 and 159. Further tests over a range of Hartmann numbers are needed to 
clarify this effect. 

The observed potential profiles along one insulating wall for zero orientation 
are radically different from the theoretical profile deducible from the work of 
Hunt & Stewartson (1965), and further experimental investigation of this 
technologically most important case is necessary. For orientations below 45" 
the potential profiles agree reasonably with the theory. They tend to confirm the 
existence of uniform flow in the central parallelogram region, which is thought to 
be bounded along lines through the corners parallel to the magnetic field by 
viscous layers of thickness of order a/M* in which the velocity varies in approxi- 
mately the error function manner: the fluid in the triangles is observed to be at 
rest. It is suggested that as the orientation approaches 45" the velocity in the 
shrinking parallelogram increases untiI the two viscous layers coalesce into a 
diffuse, high velocity jet sheet. With increasing orientation the sheet is thought to 
separate into two high velocity layers of thickness of order a/M* centred on the 
lines through the corners parallel to the magnetic field, with a region of slow 
uniform motion between them: the experiments again indicate that the fluid in 
the triangles is at rest. As the orientation increases towards 90" the two layers are 
thought to approach the insulating walls and become ultimately the high velocity 
boundary layers predicted by Hunt (1965). 

The tests at 90" and at  low Reynolds numbers gave results for the pressure 
gradient and for the potential distribution along one insulating wall which agree 
well with Hunt's (1965) analysis. At higher Reynolds numbers the pressure 
gradient exceeds Hunt's predictions by a factor which increases with Reynolds 
number. This result is thought to be due to entry effects. The potential at the 
mid-point of one insulating wall agrees closely with the theory up to the maxi- 
mum attainable Reynolds number of about 7000. 

The author is grateful to Professor J. A. Shercliff for suggesting this research 
project, and for his most valuable help and advice throughout the work and in the 
preparation of this paper. The experiments were done in the Cambridge Univer- 
sity Engineering Laboratories, under a contract with the Hanvell and Culham 
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